Olympiade Math – Algèbre 01 – Ex 07

     Olympiade de Mathématiques( compétition de mathématiques destinée aux élèves des lycées et collèges)Des exercices et sujets corrigés pour s’entraîner. 

Olympiade Mathématiques – Algèbre Niv 01 – Ex 07

x,y,z trois nombres réels non nul
Tel que: (x+y+z)² = x²+y²+z²
Montrer que
(frac{1}{x}+frac{1}{y}+frac{1}{z}=0)

 Solution:ona:
(x+y+z)²=x²+y²+z²⇾ x²+y²+z²+2xy+2yz+2zx=x²+y²+z²⇾ 2xy+2yz+2zx=0
⇾ ( xy+yz+zx ) х 1/xyz = 0 x 1/xyz (car x,y,z ≠ 0)
1/x + 1/y + 1/z = 0Faire plus d’exercices  Olympiade de Maths, c’est une gymnastique de l’esprit,Ce qu’il faut c’est 4math.net et beaucoup de pratiques4math.net Le première clé pour être bon en maths